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We investigate aggregation driven by mass injection. In this stochastic process, mass is added
with constant rate r and clusters merge at a constant total rate 1, so that both the total number
of clusters and the total mass steadily grow with time. Analytic results are presented for the three
classic aggregation rates Ki,j between clusters of size i and j. When Ki,j = const, the cluster size
distribution decays exponentially. When Ki,j ∝ i + j or Ki,j ∝ i × j, there are two phases: (i) a
condensate phase with a condensate containing a finite fraction of the mass in the system as well
as finite clusters, and (ii) a cluster phase with finite clusters only. For Ki,j ∝ i + j, the cluster size
distribution, ck, has a power-law tail, ck ∼ k−γ in either phase. The exponent is a non-monotonic
function of the injection rate: γ = r/(r−1) in the condensate phase, r < 2, and γ = r in the cluster
phase, r > 2.
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I. INTRODUCTION

Aggregation processes in which small objects merge ir-
reversibly to form larger clusters are ubiquitous in nature
[1, 2]. For example, aggregation underlies the evolution
of planetary systems in astrophysics [3], cloud formation
and dust accumulation in atmospheric sciences [4–7], as
well as polymer and gel formation in chemical physics [8–
10]. Aggregation also plays a central role in the theory
of percolation [11], fractal formation [12], and network
growth [13, 14].

Often, aggregation is driven by a constant injection of
mass and consequently, the total mass grows indefinitely
with time [15–20]. This is the case in chemical kinetics,
and in particular polymerization where the aggregation
rate depends on the number of clusters. Here, due to
aggregation, the total number of clusters typically de-
creases with time or saturates at a finite value. In such
aggregation processes, the system may undergo gelation:
a giant cluster develops and eventually, it contains all of
the mass in the system [21–23].

In this study, we are interested in complementary ag-
gregation processes that describe the growth of random
structures such as random trees and random graphs, rel-
evant in computer and information science [24–27]. For
example, in the Internet, clusters are autonomous sys-
tems; injection models the creation of new autonomous
systems and aggregation describes merger of different au-
tonomous systems [28]. Such random structures are typi-
cally grown by the following simple process: in each step
nodes may be added with some probability and other-
wise, clusters are merged. Consequently, both the num-
ber of nodes and the number of clusters grow with time.

We investigate aggregation processes with mass injec-
tion where the total merger rate does not depend on the
total number of clusters. These are fundamentally differ-
ent than aggregation processes underlying cloud forma-
tion and dust agglomeration where the total merger rate

depends on the number of clusters. Our main finding is
that in such situations there is condensation rather than
gelation. The system develops condensates that contain
a finite fraction of the mass. These macroscopic conden-
sates co-exist with microscopic clusters that contain the
rest of the mass in the system.

In our formulation, mass is injected at a constant rate
and clusters merge at a constant total rate. We address
the three classic kernels Ki,j for aggregation between
clusters of size i and j, respectively: the constant rate
Ki,j = const, the sum rate Ki,j = i + j, and the product
rate Ki,j = i× j [2]. Each of these cases represents an el-
ementary growing random structure. Generally, random
structures such as random trees and random graphs are
made of nodes interconnected by links. Mass injection
represents addition of isolated nodes, and merger repre-
sents addition of a link between two nodes [25, 27]. In the
constant rate process, two structures are picked at ran-
dom and an added link connects the two. In the product
rate process, two nodes, picked at random, are connected
by an added link. Finally, the sum rate is a hybrid of the
constant and the product cases: the link connects a ran-
domly selected node and a randomly selected structure.
We note that the constant aggregation rate models an en-
semble of random growing trees (no cycles are formed),
while the sum and the product rates model an ensemble
of random growing graphs.

For the constant aggregation rate, the cluster size dis-
tribution decays exponentially with the cluster size. For
both the sum and the product rates, where the aggre-
gation rate grows with the aggregate size, the system
undergoes a phase transition as a function of the injec-
tion rate. When the injection rate is smaller than some
critical value, the system is in a condensate phase. A fi-
nite fraction of the total mass constitutes a macroscopic
condensate, but the remaining fraction of mass is in the
form of microscopic clusters. The condensate and the fi-
nite clusters coexist. When the injection rate is larger



2

than the critical rate, there are only finite clusters.
In the cluster phase, the distribution of cluster size gen-

erally decays as a power-law with the cluster size. How-
ever, different behaviors emerge in the condensate phase.
For the product rate, the size distribution falls-off expo-
nentially at large size. For the sum rate, however, the
behavior is always power-law. Interestingly, in the latter
case, the decay exponent is not monotonic. It decreases
monotonically with the injection rate in the condensate
phase but increases monotonically in the cluster phase.

The rest of this paper is organized as follows. We in-
troduce the model, describe some of its basic features,
and formulate the master equation approach in Sec. II.
The constant rate, the sum rate, and the product rate
are analyzed in sections III, IV, V, respectively. Gener-
ally, our focus is the size of the condensate and the tail
of the cluster size distribution. We conclude in Sec. VI.
Technical derivations of two results in sections IV and V
are presented in appendices A and B.

II. THE MODEL

In our model, there are two independent and com-
peting processes: mass injection and merger of clusters.
In the first process, monodisperse elemental clusters are
added to the system. This injection process occurs at
a constant rate. In the second process, two clusters are
merged. The mass of the resulting cluster is equal to the
sum of the two original masses. The total merger rate
is constant as well, and since both processes occur with
constant rates, we may set one of them to unity without
loss of generality. We therefore set the mass injection
rate to r and the merger rate to one. Also, since the in-
jection is monodisperse, we set this injection size as the
mass unit. Initially, the system contains no clusters.

The total mass and the total number of clusters follow
directly from these definitions. Each injection event in-
creases the number of clusters by one and similarly, each
merger event decreases the number of clusters by one.
Thus, the average total number of clusters, N(t), satis-
fies dN/dt = r−1 and consequently, there is simple linear
growth

N(t) = (r − 1)t. (1)

We restrict our attention to situations where the number
of clusters grows with time, r > 1.

Merger events conserve the total mass, and hence,
the mass changes only through injection events. With
each injection event, unit-size mass is added to the sys-
tem, and thus, the average total mass, M(t), obeys
dM/dt = r. Consequently, the total mass also grows lin-
early with time,

M(t) = r t. (2)

We investigate the cluster size distribution. Let Ck(t)
be the average number of clusters of size k at time t. This

quantity satisfies the master equation

dCk

dt
= rδk,1 +

1

2

∑

i+j=k

Ki,jCiCj −
∑

i

Ki,kCiCk. (3)

The initial condition is Ck(0) = 0. The first term ac-
counts for mass injection and the last two terms account
for merger. The kernel Ki,j is defined as the aggregation
rate between two clusters with size i and j. Since the
process by which particles are selected is completely ran-
dom, this equation is exact in the thermodynamic limit
of an infinite number of particles or equivalently, the long
time limit. The total merger rate is constant, thereby im-
plying the following constraint on the aggregation rate

1 =
1

2

∑

i,j

Ki,jCiCj . (4)

The total number of clusters is of course N(t) =
∑

k Ck(t). Summing the master equation (3), and using
the constraint (4), we confirm the linear growth of the
total number of clusters (1). Similarly, the total mass
is M(t) =

∑

k kCk(t). Only the first term in the mas-
ter equation affects the evolution of the total mass, and
summing the rate equations, we recover (2).

III. CONSTANT AGGREGATION RATE

For the constant aggregation rate, all pairs of clusters
merge at the same rate, irrespective of their size. This is
the simplest and the most widely used aggregation pro-
cess with examples including fractal aggregates [29], do-
main growth [30], and random trees [31, 32]. We consider
the following size-independent aggregation rate

Ki,j =
2

N2
. (5)

This constant satisfies the normalization (4). It decreases
as the number of clusters increases so that the overall
merger rate does not change with time.

Substituting this constant rate into the master equa-
tion (3), the cluster size density satisfies

dCk

dt
= r δk,1 +

1

N2

∑

i+j=k

Ci Cj −
2

N
Ck. (6)

The linear growth of the total number of clusters (1) and
the total mass (2) suggest that the cluster size distri-
bution also grows linearly with time. Indeed, the den-
sity of the smallest clusters obeys dC1/dt = r − 2C1/N
so that this quantity, too, grows linearly with time,
C1(t) = N(t) r

r+1 . Thus, we write the cluster size density

as a product of the overall density N(t) and the time-
independent cluster size distribution ck,

Ck(t) = N(t) ck. (7)
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The cluster size distribution is normalized,
∑

k ck = 1.
This form is consistent with the initial condition, and it
satisfies (6) when the cluster size distribution obeys the
recursion equation

(1 + r)ck = r δk,1 +
∑

i+j=k

ci cj . (8)

We utilize the generating function technique [33] to
solve this equation. Let f(z) be the generating function

f(z) =

∞∑

k=1

ck zk. (9)

Normalization implies f(1) = 1. Multiplying Eq. (8) by
zk and summing over k, the generating function satisfies
the quadratic equation f2(z)− (1+r)f(z)+r z = 0. The
solution is therefore

f(z) =
r + 1

2

[

1 −
√

1 − 4r

(1 + r)2
z

]

. (10)

We can confirm that f(z) = r
1+r z + · · · , in agreement

with the above expression for C1. Writing the generating
function as a power-series, the cluster size distribution is
obtained explicitly,

ck =
1 + r

4
√

π

Γ(k − 1/2)

Γ(k + 1)

[
4r

(1 + r)2

]k

(11)

where Γ(x) is the Gamma function. Using the asymptotic
property Γ(x + r)/Γ(x) ' xr as x → ∞, we find

ck ' α k−3/2 βk (12)

with the constants α = 1+r
4
√

π
and β = 4r

(1+r)2 . There-

fore, the cluster size distribution decays exponentially,
but there is an algebraic correction. As the injection
rate approaches the merger rate, r → 1, the cluster size
distribution becomes algebraic ck ∼ k−3/2. This limiting
case coincides with the well-known behavior for time-
independent constant aggregation rates [17].

We comment that the rate equation approach is exact
only in the limit of an infinite number of particles. At
any given time t, the number of clusters is finite and
proportional to t, while fluctuations in the number of
clusters are of the order of

√
t. The relative fluctuations

in the cluster size distribution grow with cluster size and
they provide a more stringent test of the applicability of
the rate equation approach. When Ck ∼ 1, fluctuations
begin to dominate. From this criterion and Eq. (12) we
see that the prediction (11) is valid up to a cutoff size that
grows logarithmically with the total mass. Nevertheless
for any fixed size, the prediction (11) becomes exact in
the limit t → ∞.

IV. SUM AGGREGATION RATE

Aggregation rates proportional to the sum of the clus-
ter sizes are relevant in polymerization [34], coagulation

under shear-flows [5], and random graphs [25]. Subject
to the constraint (4), the sum aggregation rate is

Ki,j =
i + j

NM
. (13)

In this case, the master equation (3) becomes

dCk

dt
= r δk,1 +

k

2NM

∑

i+j=k

Ci Cj −
kN + M

NM
Ck. (14)

We again seek a solution of the form (7). The cluster
size distribution remains normalized,

∑

k ck = 1, and it
obeys the following recursion relation

(k + R) ck = Rδk,1 +
k

2

∑

i+j=k

ci cj (15)

with the constant

R =
r2

r − 1
. (16)

This recursion relation can be manually solved to find

c1 = R
R+1 , c2 = 1

R+2

(
R

R+1

)2

, etc. This procedure can

be formally related to integer partitions following the so-
lution procedure of Ref. [35]. Such a solution is useful
only when the cluster size distribution decays sharply.
Although it is difficult to obtain an explicit analytic so-
lution as in (11), it is still possible to obtain many of
the interesting properties of cluster size distribution from
asymptotic analysis of the generating function.

The generating function (9) obeys the nonlinear ordi-
nary differential equation

z (f − 1)
df

dz
= R (f − z) . (17)

Derivatives of the generating function at z = 1 are re-
lated to the moments of the cluster size distribution. For
example, the average cluster size follows from the first
derivative, 〈k〉 = f ′(1).

Differentiating (17) and then substituting z = 1 yields
a quadratic equation for the average cluster size

R−1〈k〉2 − 〈k〉 + 1 = 0. (18)

Naively, one expects that the average cluster size is the
ratio between the total mass and the total number of clus-
ters, 〈k〉 = M

N = r
r−1 . Indeed, this is a solution of (18).

However, there is another solution 〈k〉 = r. This solution
is not physical when r > 2 since the product N〈k〉 can
not exceed the total mass in the system. Each solution
is relevant in the appropriate range of the parameter r,
so that the full solution is

〈k〉 =

{

r 1 < r < 2
r

r−1 2 < r.
(19)

This assertion is supported by analysis below. The
total mass contained by the clusters, Mc =

∑

k kCk,
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FIG. 1: The condensate mass m∗ as a function of r for the sum
rate. Shown in a solid line is the theoretical prediction (20).
Shown in solid lines with symbols are Monte Carlo simulations
results for the size of the largest cluster in the system.

is of course proportional to the average cluster size,
Mc = N

∑

k kck = N〈k〉. Therefore, finite clusters con-
tain only a fraction of the mass when r < 2, but they
contain all of the mass when r > 2.

This behavior can be reconciled with mass conserva-
tion only if there is a condensate of mass M∗ that con-
tains the remaining fraction m∗ = M∗/M of the mass in
the system as follows (figure 1)

m∗ =

{

2 − r 1 < r < 2

0 2 < r.
(20)

Thus the system undergoes a phase transition. When
1 < r < 2, there is a condensate that contains a finite
fraction of the mass. This condensate coexists with the
finite clusters that contain the rest of the mass. The con-
densate contains nearly all of the mass in the limit r → 1:
when injection is very slow, the condensate “preys” on
newly added mass. As the transition point is approached,
the condensate mass vanishes, m∗ → 0 as r → 2. When
r > 2, the system contains only ordinary clusters.

The tail of the cluster size distribution can be eval-
uated from the z → 1 behavior of the generating func-
tion. In general, f(z) may contain both a regular compo-
nent and a singular component, f(z) = freg(z)+fsing(z).
The regular component is a power series in (z − 1). Let
us assume a singular behavior with the leading behavior
fsing ∝ (1 − z)γ−1 as z → 1,

f(z) = 1 + 〈k〉(z − 1) + · · ·
︸ ︷︷ ︸

freg(z)

+A(1 − z)γ−1 + · · ·
︸ ︷︷ ︸

fsing(z)

. (21)

In the limit z → 1, this form satisfies the governing equa-
tion (17) when

〈k〉γ = R. (22)

The algebraic form of the generating function implies an
algebraic form for the tail of the cluster size distribution,

ck ∼ k−γ , (23)

0 2 4 6 8
r

0

2

4

6

8

γ

FIG. 2: The exponent γ versus r for the sum rate.

as k → ∞. The exponent is found by substituting (19)
into the relation (22). Therefore, there are two regimes
of behavior

γ =

{
r

r−1 1 < r < 2

r 2 < r.
(24)

We note two remarkable features. First, the cluster size
density is algebraic both in the condensate phase and in
the cluster phase. Second, the characteristic exponent
is a non-monotonic function of the injection rate: it de-
creases monotonically with r in the condensate phase and
it increases monotonically in the cluster phase (Fig. 2).

The exponent γ is minimal, γ = 2, at the phase tran-
sition point, r = 2. For γ < 2, mass conservation would
be violated because the sum

∑

k kck is divergent. The
restriction γ > 2 justifies our previous choice of the non-
trivial solution 〈k〉 = r in Eq. (19).

The behavior at the phase transition point requires a
special treatment. We find that the cluster size density
decays slightly faster than k−2, namely

ck ' 2

k2 (ln k)2
as k → ∞. (25)

The derivation of this result is detailed in Appendix A.
With this logarithmic correction, the sum

∑

k kck or the
total mass in finite clusters, remain finite.

In ordinary gelation (or percolation), the cluster size
distribution is algebraic only at the critical point; away
from criticality, it has exponential tails. In the present
case, the cluster size distribution exhibits a strikingly
different behavior — it is algebraic everywhere while at
the critical point there is a logarithmic correction.

The size of the condensate can be obtained directly by
focusing on its dynamics. Let us assume that there is a
giant cluster in the system with mass M∗. Its growth rate
is dM∗/dt =

∑

i Ki,M∗
i and substituting the aggregation

rate (13), we arrive at

dM∗

dt
=
∑

i

M∗ + i

N M
i ≈ M∗(M − M∗)

N M
. (26)
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In the second step, we made the approximation
M∗ + i ≈ M∗ as the condensate is much larger than the
rest of the clusters. When the condensate contains a fi-
nite fraction of the mass, M∗ = m∗M , then from (26),
we find m∗(r − 1) = m∗(1 − m∗). Solving this equation,
we recover the condensate mass (20).

This approach can also be used to derive the size of
the largest cluster in the cluster phase. From (20), the
quantity M∗ is negligible compared with M , and there-
fore, the governing equation (26) reduces to dM∗/dt ≈
N−1M∗ ≈ 1

(r−1)tM so that

M∗ ∼ t
1

γ−1 , (27)

with γ = r when r > 2. Therefore, the size of the largest
cluster grows algebraically with time. This result can be
alternatively derived using the algebraic behavior (23)
and the extreme statistics criterion 1 ' N

∑

k≥M∗

ck.
We performed Monte Carlo simulations to test the the-

oretical prediction for the condensate mass (Fig. 1). In
the simulations there are two elemental steps: injection
with probability r/(r + 1) and aggregation with proba-
bility 1/(r + 1). In an injection step, a cluster with unit
mass is added into the system. In an aggregation step,
two clusters, picked with probability proportional to the
sum of the two masses, are merged. The simulations re-
sults represent an average over 100 independent runs for
systems of size M = 104 and M = 105. We measured
the size of the largest cluster in the system. Well below
the transition point, there is excellent agreement between
the theory and the simulations. The estimate (27) for the
size of the largest cluster implies M∗/M ∼ M−(r−2)/(r−1)

when r > 2; similarly, M∗/M ∼ (ln M)−1 at the tran-
sition point, r = 2. Therefore, the size of the largest
cluster decays very slowly as a function of the system
size near the transition point. Indeed, the simulation re-
sults slowly converge to the (thermodynamic) theoretical
prediction in this regime.

V. PRODUCT AGGREGATION RATE

The product aggregation rate models polymerization
and gelation [8, 9], as well as random graphs [24, 27],
and in our case it has the following form

Ki,j = 2
i × j

M2
. (28)

The explicit rate equation for the product aggregation
rate is

dCk

dt
= r δk,1 +

1

M2

∑

i+j=k

i j CiCj −
2

M
k Ck. (29)

Since the total mass appears in the denominator in the
rate equation, we use a different normalization

Ck = M ck. (30)

The average number of clusters of size k still grows lin-
early with time. The transformation (30) reduces the
master equation (29) to the nonlinear recursion equation

r ck = r δk,1 +
∑

i+j=k

i j ci cj − 2k ck. (31)

Given of the structure of this equation, it is convenient
to use a different definition of the generating function

f(z) =

∞∑

k=1

k ckzk. (32)

The generating equation satisfies the very same equation
(17) with

R =
r

2
. (33)

Although the governing equation is the same, the bound-
ary condition is different. Since the product aggregation
rate grows with the cluster size, we expect that again
there are two phases: a condensate phase and a clus-
ter phase. The total mass contained in finite clusters
is given by Mc = Mf(1). Therefore, in the condensate
phase f(1) < 1 while in the cluster phase f(1) = 1. This
change in the boundary condition results in a drastically
different behavior.

We first discuss the cluster phase where f(1) = 1, and
consequently, the analysis is a straightforward general-
ization of the above. The first derivative at z = 1 again
satisfies R−1[f ′(1)]2−f ′(1)+1 = 0. At the critical point
Rc = 4 and therefore rc = 8. Solving this quadratic
equation, the first derivative is

f ′(1) =
r

4

(

1 −
√

1 − 8

r

)

. (34)

The first derivative is now the ratio between the second
and the first moments of the cluster size distribution,
f ′(1) = 〈k2〉/〈k〉. The tail behavior follows from the
singular component of the generating function as in (21)

f(z) = 1 + f ′(1)(z − 1) + · · ·
︸ ︷︷ ︸

freg(z)

+B(1 − z)γ−2 + · · ·
︸ ︷︷ ︸

fsing(z)

. (35)

This again implies the power-law decay (23) for the clus-
ter size distribution. We note that the unit shift in the
exponent is due to the different definition of the gener-
ating function (32). From the governing equation (17),
the exponent γ satisfies (γ − 1)f ′(1) = R, and the decay
exponent is

γ = 1 +
2

1 −
√

1 − 8
r

. (36)

Similar to (24), the characteristic exponent grows linearly
with the injection rate, γ ' r

2 , at large injection rates
(Figure 3). The minimum value, γ = 3, is achieved at
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FIG. 3: The exponent γ versus r for the product rate.

the phase transition point. A more careful analysis is
again required at the phase transition point; we find (the
analysis is essentially the same as in the case of the sum
rate, Appendix A) that ck ∼ k−3(ln k)−2 as k → ∞.

In the condensate phase, we are able to obtain the
mass of the condensate only in the vicinity of the phase
transition,

m∗ ∼ exp

[

− π
√

8√
r − 8

]

, (37)

as r ↓ 8. The derivation of this result resembles that of
Refs. [36, 37]; it is detailed in Appendix B. In contrast
with the sum rate, the phase transition is now very gen-
tle: all derivatives of the condensate mass vanish at the
transition point r = rc [38, 39]. In practice, it may be
difficult to locate the phase transition point (Figure 4).
We comment that similar behavior was recently found in
several models of growing networks [36, 37, 40–44].

As a signature of the phase transition, the quantity
f ′(1) has a discontinuity at the phase transition point. In
the condensate phase, this quantity is obtained, using the
fact that f(1) < 1, directly from the governing equation
(17), f ′(1) = R = r/2. In the cluster phase it is given
by (34). Therefore, the ratio between the second and the
first moments has a jump at rc = 8,

〈k2〉
〈k〉 →

{

4 r ↑ rc,

2 r ↓ rc.
(38)

A similar jump occurs in the Berezinskii-Kosterlitz-
Thouless phase transition [38, 39].

Finally, we study the tail of the cluster size distribu-
tion. For this purpose, it is convenient to make the trans-
formation z = ew so that the generating function (32) is
redefined

f(w) =

∞∑

k=1

k ckekw. (39)

Substituting this definition into the recursion equation
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FIG. 4: The condensate mass m∗ as a function of r ob-
tained from Monte Carlo simulations of the aggregation pro-
cess (product rate). The results are from a single run with
M = 106 particles. The inset displays the same behavior
using a semi-log scale. These simulation results represent an
average over 100 independent realizations with a varying num-
ber of particles.

(31), the generating function obeys

df

dw
= R

f − ew

f − 1
. (40)

The denominator suggests that f(w) has a singularity at
w0 with f(w0) = 1. From the definition (39), this implies
the exponential decay ck ∼ exp(−k/k0) with k0 = 1/w0.
Since we can not solve for the generating function, we
can not locate this singularity explicitly. Nevertheless,
one can still deduce the behavior near this singularity
using asymptotic analysis. Again, we assume that the
generating function has a regular component and a sin-
gular component near w = w0,

f(w) = 1 + · · ·
︸ ︷︷ ︸

freg(w)

+A(w0 − w)ν−2 + · · ·
︸ ︷︷ ︸

fsing(w)

. (41)

Substituting this form into (40), and equating powers of
(w0−w) on both sides of the equation we obtain ν = 5/2.
Using the definition (39), the leading behavior of the
singular component 1 − f(w0) ∼ (w0 − w)ν−2 implies
an algebraic correction to the leading exponential decay,
ck ∼ k−ν exp(−k/k0) as k → ∞. We conclude that the
tail of the cluster size distribution decays as follows

ck ∼ k−5/2e−k/k0 . (42)

The characteristic size can be related to the conden-
sate mass in the vicinity of the phase transition as the
characteristic size is expected to diverge in this limit,
k0 → ∞. Consequently, the singularity is located close
to the origin, w0 → 0. Let us estimate the behavior of
the generating function near the origin. From the defini-
tion (39), we have f(w = 0) = 1 − m∗. Also, from the
governing equation we have f ′(0) = 4 in the limit r ↑ 8



7

as in (38). Therefore, f(w) = 1 − m∗ + 4w as w → 0
and from the condition f(w0) = 1, the location of the
singularity is w0 = m∗/4. Therefore, the characteristic
size grows as follows

k0 ∼ 1/m∗ (43)

in the vicinity of the phase transition point, r ↑ 8.
The tail behavior coincides with the critical behavior

at sufficiently small sizes, ck ∼ k−3 for k ¿ k0, and
exponential decay, ck ∼ exp(−k/k0), occurs beyond that
scale, k À k0. The two behaviors should of course match
at k ≈ k0: this implies the proportionality constant in

(42), ck ∼ k
−1/2
0 k−5/2 exp(−k/k0).

VI. CONCLUSIONS

In conclusion, we studied aggregation with constant
injection of mass. In this process, the total number of
clusters grows with time. For aggregation rates growing
as the sum or the product of the cluster sizes, there are
two phases: a condensate phase and a cluster phase. In
the condensate phase, a condensate containing a finite
fraction of the mass coexists with finite clusters, while in
the cluster phase there are only finite clusters.

For the sum rate, the mass of the condensate is a linear
function of the injection rate. Also, the cluster size dis-
tribution decays algebraically in both phases and inter-
estingly, the decay exponent is a non-monotonic function
of the injection rate. For the product rate the conden-
sate mass is extremely small in the vicinity of the phase

transition point and consequently, the phase transition
is very gentle. In this case, the tail of the cluster size
distribution is exponential in the condensate phase but
algebraic in the cluster phase.

We comment that there are two frameworks for de-
scribing aggregation processes: the Flory approach that
allows interaction between giant and finite clusters [8]
and the Stockmayer approach that allows for interactions
between finite clusters only [9]. We used the more chal-
lenging former approach as it is the appropriate approach
for modeling growing random structures [45].

The various aggregation processes correspond to dif-
ferent random growing structures, but our study focused
only on the size of these structures. We note that this
theoretical framework can be generalized to also study
structural properties such as paths and cycles [27].

There are a number of possible extensions of this work.
We focused on the three classic aggregation rates where
the generating function obeys closed equations. This
framework does not allow derivation of the necessary con-
ditions for the emergence of a condensate as a function
of the aggregation rate. Based on the sensitive algebraic
behavior in both of the phases, we speculate that the sum
rate may be the marginal case for condensation.
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APPENDIX A: DERIVATION OF (25)

At the phase transition point r = 2 we have
γ = 2 and therefore the leading singular term
fsing ∝ (1 − z)γ−1 becomes regular. This suggests to use
instead fsing ∝ (1 − z)u(z) where u(z) vanishes slower
than any power of (1 − z) as z → 1. Thus at the phase
transition point we employ the following expansion

f(z) = 1 + 2(z − 1) + (z − 1)u(z) + . . . (A1)

Substituting (A1) into (17) yields the differential equa-
tion

(z − 1)
du

dz
+

u2

2 + u
= 0 (A2)

whose (implicit) solution is

− 2

u
+ ln u + ln(1 − z) = const. (A3)

In the limit z → 1, the integration constant is negligible
compared with the logarithmic term and consequently,
u → 2/ ln(1 − z). Indeed, u vanishes slower than any
power of (1 − z) as z → 1. Thus

f(z) = 1 + 2(z − 1) +
2(z − 1)

ln(1 − z)
+ . . . (A4)

Inverting this expansion leads to Eq. (25) [36].
APPENDIX B: DERIVATION OF (37)

The mass of the condensate follows from the behavior
of the generating function at z = 1, m∗ = 1 − f(1).
To analyze the behavior near this region, we make the
transformations

f(z) = 1 + x g(x), (B1a)

z = 1 − x. (B1b)

With these transformations, the equation for the gen-
erating function (17) is transformed into the following
first-order nonlinear differential equation

xgg′ + g2 + Rg + R = 0. (B2)

In writing this equation, we kept only the leading order
terms. Writing g

g2+Rg+Rdg + 1
xdx=0, and integrating,

we have

1

2
ln(g2 + Rg + R) + ln x− R

2a
tan−1

(
g + R/2

a

)

= const

where a =
√

R − R2/4. The integration constant
can be evaluated by taking the x → 0 limit. Using
m∗ = − limx→0 xg(x), the first two terms in the above
equation approach ln m∗ in the limit x → 0. Using
limx→0 g(x) = −∞, the last term approaches Rπ

4a . Hence

1

2
ln(g2 + Rg + R) + ln x − R

2a
tan−1

(
g + R/2

a

)

= ln m∗ +
πR

4a
. (B3)

Since we are interested in the behavior near the phase
transition point, we take the limit r → 8. In this limit,
we can replace R by 4 and also, the quantity g2 +Rg+R
by (g + 2)2. Additionally, we may replace tan−1 g+2

a by
π
2 − a

g+2 . With these substitutions, Eq. (B3) becomes

ln(−g − 2) + ln x +
2

g + 2
= ln m∗ +

2π

a
. (B4)

Next, we evaluate the left-hand side precisely at the
phase transition point, r = 8. The critical behavior is
detailed in Appendix A. Substituting g = −2 − u and
x = 1 − z into (A3), gives

ln(−g − 2) + ln x +
2

g + 2
= const. (B5)

Substituting this into (B4) we obtain the condensate
mass in the vicinity of the phase transition (37).


